LIFE PEAT RESTORE

Greenhouse gas exchange on degraded and rewetted peatlands

LIFE 15 CCM/DE/000138 Visit us at: <u>https://life-peat-restore.eu</u>

Andreas Herrmann, Leticía Jurema, Tom Kirschey, et al.

Background

- Drainage promote the decomposition of peat, which results in high emissions of carbon dioxide (CO₂) and nitrous oxide (N₂O)
- Rewetting & Restoration of drained and degraded peatlands reduces Greenhouse Gas (GHG) emissions and could mitigate effects of the climate change
- Higher water tables can also promote the methanogenesis and the emissions of methane (CH₄)

Methods

 GHG-Monitoring is needed for Estimation and Evaluation of the climate effect of restoration measures

Project Sites

RECO [g CO2-C * m-2 * h-1]

1.0

0.5

0.0

SNP_all

SNP_temporal

Code	Site Name	Ecosystems (close to the measurement plots)
SL (EST)	Suursoo-Leidissoo	Calcareous fen meadows, swamp & transitional mire forest, a.o.
AM (LAT)	Augstroze Mire	Degraded Raised bog & degraded bog woodland
LEF (LAT)	Lake Engure Fen	Calcareous fen meadows
BM (LAT)	Baltezers Mire	Bog woodland & transitional mire meadows
SAC (LIT)	Sachara	Degraded Bog woodland
PSC (LIT)	Puščia	Former peat cut-off area, bare peat
AUK (LIT)	Aukštumala	Active and Former peat cut-off area, bare peat
AVS (LIT)	Amalvas	Degraded Bog woodland
SNP (POL)	Slowinski National Park	Bog Heath
BB (GER)	Biesenthaler Becken	Swamp forest

Great Thanks to M. Kupetz and the colleagues of Silava for field measurements

- Manual Chamber Method (acc. to ALM et al. 2007, DRÖSLER et al. 2005) with transparent and opaque chambers equipped with a cooling system
- 3-5 spatial repetitions per site
- Automated in-situ CO₂-measurements (R_{ECO}, NEE) by Infrared gas analyzer (Li-6400; Li-810 COR, EGM5)
- Manual and automatic sampling for CH₄ and N₂O analysis in the laboratory
- Additional measurements of soil temperature, soil moisture, photosynthetic radiation, water table, forest inventory data and climatic parameter)
- 2-4 weekly measurement campaigns throughout the vegetation period with several single measurements at different radiation and temperature conditions per measurement day
- Flux calculation by using the ideal gas equation;
 Δc was calculated by linear regression

$$F_{GHG} = \frac{M * P * V * \Delta c}{R * T * A}$$

400

First Results BB_all **BB_temporal** BB_all **BB_temporal** 40 Methane-Flux [mg CH₄-C * m⁻² * h⁻¹] 1 2 2 JEE [g CO2-C * m-2 * h-1] 0.5 40 0 0 0.0 0.0 40 40 40 Q -1.0 -1.0 0.0 18_05 18_07 18_10 19_06 19_06 19_04 18 05 18 07 18 10 19 04 Month Month NEE **R**_{ECO}

SNP_all

Methane & Nitrous Oxide Fluxes_BB

Methane & Nitrous Oxide Fluxes_SNP

SNP_temporal

Contact details: Nature and Biodiversity Conservation Union, Charitéstr. 3, 10117 Berlin, Germany, Andreas Herrmann: Andreas.Herrmann@NABU.de, Letícia Jurema@NABU.de, www.life-peat-restore.eu/en